我国平板玻璃工业正面临严峻的NOx控制形势,研究并推广玻璃窑炉高效脱硝技术对玻璃工业发展及大气环境保护均具有重要意义。选择性催化还原(SCR)脱硝技术是国内外公认效率最高的脱硝技术,然而该技术在玻璃窑炉中推广应用还面临诸多技术问题。本研究设计并建设了10000Nm3/h的平板玻璃工业窑炉中低温SCR脱硝中试装置,分析了玻璃窑炉烟气组分波动规律及其对SCR脱硝系统的潜在影响,考察了烟气温度、喷氨量控制和烟气处理量等工艺参数,开展了为期6d的连续运行实验。这些在实际烟气中开展的研究为玻璃窑炉SCR脱硝技术研究分享了大量一手数据和经验。
玻璃是一种历史悠久、应用广泛的无机材料,主要分为平板玻璃、技术玻璃、光学玻璃、日用玻璃和玻璃纤维纱等类型。平板玻璃工业是指采用浮法、平拉、压延等工艺制造平板玻璃的工业,是我国重点工业污染控制行业之一。我国平板玻璃工业窑炉常采用重油或石油焦作为燃料,会产生烟尘、二氧化硫、氮氧化物等污染物。由于玻璃熔化工艺燃烧温度非常高,热力型氮氧化物产生量非常大,导致玻璃窑炉的NOx排放浓度高达数千毫克每标立方,远高于水泥、陶瓷等其他类型的工业炉窑。目前,我国平板玻璃工业已全面执行氮氧化物700mg/m3的排放标准,行业面临严峻的氮氧化物控制形势。因此,研究并推广玻璃窑炉高效脱硝技术对玻璃工业发展及大气环境保护均具有重要意义。
选择性催化还原(SCR)和选择性非催化还原(SNCR)是目前商业应用最成功的的2种脱硝技术。SNCR脱硝效率有限,且必须在窑内喷氨,会对玻璃添加剂玻璃质量产生影响,目前难以在玻璃窑炉中推广应用。SCR是国内外公认效率最高的脱硝技术,已成为火电厂和机动车氮氧化物控制的主流技术,然而在玻璃窑炉中推广应用还存在诸多技术问题,需在实际烟气中进行验证或研究,主要体现在:(1)玻璃窑炉存在换火过程,此时窑炉燃烧温度先迅速降低再迅速升高,NOx生成量剧烈波动,氨可能瞬时不足或过量,导致脱硝效率下降或氨逃逸;(2)部分玻璃窑炉只能选取300℃以下的烟气段安装SCR装置,无法满足传统商用低钒催化剂300~420℃的最佳温度区间,必须选用高钒催化剂才可能取得理想的脱硝效率,而高钒催化剂以往大多用于低硫或无硫环境,因此其在高硫环境中的稳定性有待观察;(3)玻璃窑炉多采用富氧燃烧,烟气中SO2含量较高,中低温条件下的氨沉积问题可能较严重,可能引起SCR催化剂中毒;(4)玻璃窑炉烟尘中碱金属、碱土金属和砷等物质的含量较高,这些物质易引起SCR催化剂中毒,导致脱硝效率快速下降。
我国华尔润玻璃产业股份有限公司、吴江南玻玻璃有限公司、江苏科行环境工程技术有限公司等对玻璃窑炉SCR技术开展了积极的尝试性研究,获得了大量的重要经验。然而,目前关于玻璃窑炉SCR技术研究的报道仍然较少,针对上述技术问题的研究更是极为紧缺。针对这一现状,本实验通过在某平板玻璃工业窑炉建设10000Nm3/h的SCR脱硝中试装置,围绕工艺设计优化、关键工艺参数和长时间连续运行状况开展研究,验证和探讨各技术问题,以期为玻璃窑炉SCR脱硝技术研究提供参考。
1实验部分
1.1催化剂
本研究采用蜂窝式成型催化剂,主要成分为钒钛。钒钛催化剂具有活性高、选择性强、抗硫性好等优点,其二氧化钛载体在SO2和O2存在的情况下只是微弱可逆的被硫化,在高硫烟气中催化剂稳定性表现良好[1,15]。催化剂体积为2m3,分为2个模块,模块安装尺寸为1100mm×1100mm×1300mm。
1.2SCR脱硝中试设计
结合SCR脱硝技术的工艺特点和平板玻璃工业窑炉烟气的排放特征可知,适用于玻璃窑炉的SCR脱硝系统必须满足如下要求:(1)尽量避免烟气温度下降,以保证催化剂的脱硝效率,并且降低硫铵盐的生成量;(2)设计合理的喷氨方式,避免玻璃窑炉换火过程导致的氨逃逸或脱硝效率下降;(3)设计可行的硫铵盐清洗措施,避免设备腐蚀;(4)设计烟气预处理装置,减轻催化剂的碱金属、碱土金属和砷中毒。
针对玻璃窑炉SCR脱硝系统的特殊要求,本实验开展如下针对性设计(脱硝系统设计图见图1):(1)从烟气入口开始,管道全程保温;(2)喷氨点设计在预处理塔之前,采取连续喷氨方式,氨氮比控制在0.8~1,氮氧化物的量通过计算2h内每分钟的平均值获得;(3)在SCR装置前设计烟气预处理塔,塔内布置少量填料,缓冲硫铵盐和碱金属、碱土金属、砷等物质对催化剂的影响。
中试装置建在广东省佛山市高明区明城镇某特种玻璃生产企业,燃料为重油,设计烟气处理量为10000Nm3/h,设计脱硝效率为70%。该企业采用压延工艺,生产的玻璃主要用于微波炉,玻璃含硅、硼、钠、钾、锌、铅、镁、钙和钡等成分。上游烟道中(车间外)的烟气温度约为275~320℃,由于喷氨鼓风及烟道散热,接入SCR装置的烟气入口处温度下降至230~290℃。烟气处理量可以通过风机控制,开机运行后催化床层存在一个升温过程,但一般不能按需调节烟气温度。
1.3中试研究方案
中试研究中首先分析烟气组分波动规律及对SCR脱硝影响,明确玻璃窑炉特有的换火操作对SCR脱硝系统的潜在影响,然后考察烟气温度、喷氨量控制和烟气处理量等参数对SCR脱硝的影响,优化得出SCR脱硝系统高效稳定运行所需的工艺参数,最后开展为期6d的连续运行实验,基于实际烟气实验结果探讨玻璃窑炉中低温SCR技术的硫铵盐沉积、催化剂中毒等问题。
1.4分析方法与检测手段
脱硝反应器进出口的NO、NO2、SO2和O2浓度通过德国rbrEcom-J2KNProIN多功能烟气分析仪测定,出口氨逃逸采用纳氏试剂分光光度法测定。
脱硝效率定义为:脱硝效率=(进口NOx浓度-出口NOx浓度)÷进口NOx浓度×100%。
2实验结果及讨论
2.1烟气组分波动规律及对SCR脱硝影响分析
玻璃窑炉换火操作的典型特征是CO浓度迅速升高,正常熔融过程中CO浓度不超过几十mg/m3,但在换火操作时上升至数千mg/m3。换火过程中,脱硝设施进出口烟气温度变化不大。由于玻璃窑炉换火操作,进口NOx浓度呈现规律性变化,详见图2。正常熔融过程中,氮氧化物的浓度为,1800~2200mg/m3(折算为标况);换火过程中,NOx浓度迅速降低,甚至可能低至100mg/m3以下,换火完成后,NOx又迅速升高。根据SCR脱硝主反应方程式(1),SCR工艺的理论氨氮比为1,氨氮比过低会影响脱硝效率,氨氮比过高则容易增加氨逃逸[16],工程应用中常根据脱硝效率及运行成本要求将氨氮比控制在0.6~1.05。由于玻璃窑炉排放的NOx浓度随换火操作呈现规律性变化,氨氮比控制将非常困难,很容易出现氨瞬间过量或不足的问题。
4NO+4NH3+O2→催化剂4N2+6H2O(1)
与NOx相似,SO2也会出现波动(图3),但未表现出明显的规律性。SO2平均浓度约为6000~7600mg/m3(折算为标况)。一般认为,在潮湿的含氧烟气中,SO2会与NH3发生如式(2)、(3)和(4)所示的反应。通常情况下,亚硫酸铵在60℃左右开始分解,硫酸氢铵在200℃左右开始分解,而硫酸铵在280℃以上才开始分解。SCR装置入口处烟气温度约为230~290℃,在此温度范围内硫酸铵难以快速分解,因此,SCR装置中存在硫酸铵累积的问题,可能对SCR装置造成腐蚀,并且可能导致催化剂中毒。
SO2+2NH3+H2O?(NH4)2SO3(2)
2SO2+2NH3+H2O+O2?NH4HSO4(3)
2SO2+4NH3+2H2O+O2?(NH4)2SO4(4)